Working Model Rubrics

Adap	ted	from	Science	Fair I	Proiects	rubrics	created b	v the	Science	Department	at ACS	S and	FISSIO	V2016	team
		,	~~~~~~				0.000000	<i></i>	2010100	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			1 100101	1 - 0 - 0	

FISSION Juror	: project number \rightarrow				
Creativity and Originality	 Provides a solution: theoretical or practical to a problem, based on student's application of their knowledge and creating their own product. The key concept in the project is the author's own innovation, own thought, own invention. Shows resourcefulness, design creativity and unique use of equipment and construction of project. 				
Application and understanding of the Model Chosen	 Students understand the extensions and applications that the model allows Students can explain how their model resembles the real product in all its complexities. 				
Doing Work	• The project has the potential to be a practical solution. Preferably it is either a machine or a program that fulfills a certain task, i.e. does some practical work. OR it is a novel approach to a problem				
Model Construction and Visual Appeal	 I) If it is a machine: it incorporates moveable parts that directly aid in demonstration of concept/process. Shows careful and neat construction; materials are appropriate and sturdy. Choice of materials and construction technique show significant forethought. If it is an original theoretical solution: the logical steps are well-explained and rigorously 				

	proven to be necessary and correct 3) If it is an original program: it is user-friendly and not prone to technical problems
Poster	 All expected components are present and clear, including background research, materials and procedure (where applicable), main results of the invention Text is concise and free of grammar and spelling errors. References are clearly displayed in proper MLA format. Display meets size requirements If appropriate, technical drawings are included and are neatly drawn.
Presentation	 Student is able to present the way they came about making the innovation. (Student has reached his/her conclusion thanks to a firm knowledge base in the subject area. Solution was based on hypothesizing and experimenting.) Presentation is well organized, delivered in 5-10 minutes, and includes all necessary information. Students don't stumble and use appropriate speed and volume. Students maintain good eye contact and good posture.

Projects ranking: